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Abstract

The e�ciency of the quadrature-free form of the dis-
continuous Galerkin method in two dimensions, and
brie
y in three dimensions, is examined. Most of the
work for constant-coe�cient, linear problems involves
the volume and edge integrations, and the transfor-
mation of information from the volume to the edges.
These operations can be viewed as matrix-vector mul-
tiplications. Many of the matrices are sparse as a
result of symmetry, and blocking and specialized mul-
tiplication routines are used to account for the sparsity.
By optimizing these operations, a 35% reduction in to-
tal CPU time is achieved. For nonlinear problems, the
calculation of the 
ux becomes dominant because of
the cost associated with polynomial products and in-
version. This component of the work can be reduced
by up to 75% when the products are approximated by
truncating terms. Because the cost is high for nonlin-
ear problems on general elements, it is suggested that
simpli�ed physics and the most e�cient element types
be used over most of the domain.

Introduction

The discontinuous Galerkin (DG) method is a highly
compact formulation that provides a method of ob-
taining the high accuracy required for computational
aeroacoustics on unstructured grids. The ability to
use an unstructured grid greatly simpli�es the largest
obstacle in computing the 
ow around complex geome-
tries: the generation of the grid. In reference 1, the
discontinuous Galerkin method was formulated in a
quadrature-free form to reduce the computational ef-
fort and storage requirements. Atkins et al.

2 reported
on an implementation of the method for parallel com-
puters. The present paper discusses further strategies
to reduce the required CPU time to perform meaning-
ful calculations. Variable ordering and loop unrolling
are discussed �rst as they have broad implications
across all of the computations. The rest of the paper
addresses the calculations involved with progressively
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more complex physics. For constant-coe�cient, linear
problems, the core computations can be cast into the
form of matrix-vector multiplications. Improvements
in the e�ciency can be obtained by taking advan-
tage of the sparsity in the matrices. When standard
polynomials are used as the basis functions, most of
the sparsity is a result of symmetry in the compu-
tational element. By reorganizing the basis functions,
blocked matrices are obtained. However, blocking can-
not account for all of the sparsity in the matrices
for quadrilateral elements. Furthermore, considerably
fewer non-zero entries, on the order of N instead of
N2 for an N � N matrix, can be obtained by using
orthogonal polynomials as the basis set. In order to
take advantage of all of the sparsity, a computer code
is used to generate C macro functions that are in-
cluded into the proper routines at compile time. The
macro functions completely unroll all of the loops in-
volved in the matrix-vector multiplies and account for
all of the sparsity. CPU comparisons are given that
demonstrate the relative improvements from blocking,
using a di�erent basis set, and using the C macros.
For equation sets that involve quadratic terms such
as for incompressible 
ow, the calculation of the 
ux
becomes dominant. In the quadrature-free approach,
the 
ux integrations are performed by storing the in-
tegrations of all relevant products of the basis sets and
simplymultiplying by the appropriate coe�cients dur-
ing the calculation. For nonlinear terms, it is necessary
to represent products in terms of a single function in
the basis set, and usually to expand the number of
precomputed integrals. The work increases dramati-
cally when the basis set is large. Still more work is
required when the 
ux requires divisions such as the
full Euler equations. To obtain a 
ux term such as
�u2 = (�u)(�u)=� from � and �u requires products
and a division. The division can either be approxi-
mated from the in�nite Taylor series of the inverse of
a polynomial, or a matrix must be inverted for each
element.

Numerical Method

The discontinuous Galerkin method is applicable to
systems of �rst-order equations of the form

@q

@t
+

@fi
@xi

= s: (1)

1

American Institute of Aeronautics and Astronautics Paper



AIAA-99{3309

A summation convention is used for all repeated in-
dices. Here, i ranges from unity to the number of
coordinate directions. The domain of interest is di-
vided into non-overlapping elements each of which is
de�ned on some domain 
 with a boundary @
. For
the two-dimensional linearized Euler equations, q, f ,
and s are given by

q =

0
BB@

�
p
u
v

1
CCA ; f1 =

0
BB@

U 0 � 0
0 U 
P 0
0 1=� U 0
0 0 0 U

1
CCAq;

f2 =

0
BB@

V 0 0 �
0 V 0 
P

0 0 V 0
0 1=� 0 V

1
CCAq;

s =

0
BB@

0 0
0 (1� 
)(U x + V y)

�(UUx + V Uy)=� 1=�x
�(UV x + V V y)=� 1=�y

����������������

0 0
(
 � 1)Px (
 � 1)Py

V y �Uy

�V x Ux

1
CCAq: (2)

q is the vector of dependent variables. An over-line has
been used to denote local temporal-mean quantities,
and subscripted values denote di�erentiation. � and
p are the density and pressure, and u and v are the
x and y directed velocities, respectively. The ratio of
speci�c heats is 
. The equations have been made
dimensionless using the ambient speed of sound co as
the reference velocity.
The discontinuous Galerkin method is obtained by

approximating the solution in each element 
 in terms
of an appropriate set of basis functions bm.

q �

NX
m=1

qmbm = qmbm

where fbm; m = 1; 2; : : : ; Ng is a set of basis func-
tions. The coe�cients of the approximate solution qm
are the new unknowns, and equations governing these
unknowns are obtained by an integral projection of
the governing equations onto the basis set. The weak
conservation form is obtained by integrating by parts.

Z



bk
@q

@t
J d
 �

Z



@bk
@�i

J�1fiJ d


+

Z
@


bk(JJ
�1fini)

Rds =

Z



bksJ d! (3)

for k = 1; 2; : : : ; N ,

J =
@(x; y)

@(�; �)
;

and J = jJj. The solution q is approximated as an
expansion in terms of the basis functions; thus, both
q and fi are discontinuous at the boundary between
neighboring elements. The discontinuity in q between
adjacent elements is treated with an approximate Rie-
mann 
ux, which is denoted by the superscript R.
The Jacobian of the transformation from the global
coordinates (x; y) to the local coordinates (�; �) of the
element is J. The basis set must be complete, but
many classes of functions could be used. A common
choice is a set of polynomials of the form �i�j that are
de�ned local to the element. The basis set for degree
p contains all polynomials of the form �i�j such that
the integers i + j � p. A possible basis set in two
dimensions for p = 2 is f1; �; �; �2; ��; �2g.
To implement the quadrature-free approach, the 
ux

fi must also be written as an expansion in terms of
basis functions:

fi(q) � f ij(q)bj ;

and a similar expansion is made for the approximate
Riemann 
ux and the source s. Because the functional
behavior of all of the variables is known, the integra-
tions in equation (3) can be performed analytically. To
obtain the values of the integrals for a particular set
of coe�cients requires the multiplication of a matrix
times the vector of the coe�cients of the 
ux poly-
nomial. Writing the integrations in this form results
in

JMkm
@qm
@t

� AikjJJ
�1f ij

+ Blkn

�
JJ�1f ln

�R
= JMkmsm (4)

where l is an index that runs over the number of sides
of the element, and fini � f lnbn on the lth edge. The
overline in bn denotes an edge basis. The mass matrix
Mkm and the tensor Aikj are given by

M = Mkm =

Z



bmbk d
; (5)

Ai = Aikj =

Z



bj
@bk
@�i

d
 (6)

for 1 � k; j;m � N , and i ranges over the number of
dimensions. Each Ai can be viewed as a matrix in k; j
with elements Aikj.
The derivation of the boundary integral terms is

complicated only by the fact that the solutions on ei-
ther side of the element boundary are represented in
terms of di�erent coordinate systems. This problem
is resolved by expressing the solution on both sides
of the element boundary in terms of a common edge-
based coordinate system (a simple coordinate trans-
formation). This allows the boundary integral to be
expressed in terms of an edge matrixBl times a vector
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that is composed of the coe�cients of the approximate
Riemann 
ux expressed in terms of the edge-based co-
ordinate system. The edge matrices are given by

Bl = Blkn =

Z
@


bk

�
�(�l); �(�l)

�
bn d�l (7)

where bn are the basis functions, and � is the coor-
dinate on the lth edge. The index n ranges up to
Ne. Most elements are constrained to shapes that map
into one of a few �xed simple computational elements
(such as a unit square or an equilateral triangle in two
dimensions) with J and J constant so that the ma-
trices M, Ai and Bl are the same for all elements
of a given type. The products ~Ai = M�1Ai and
~Bl = M�1Bl can be precomputed and stored at a
considerable savings in terms of both computer stor-
age and computational time. This constraint is only
to facilitate an e�cient implementation and can be re-
laxed at selected elements if the need arises. A detailed
derivation of the matrices M, Ai, and Bl is given in
reference 1. Completely general quadrilaterals cannot
be mapped into the same similarity element, so most
quadrilateral elements are restricted to parallelepipeds
which can be linearly mapped into a square. However,
arbitrary triangles can be mapped into the same simi-
larity element. Therefore, triangles are used to handle
geometric complexity without incurring a large stor-
age penalty. The triangular and quadrilateral elements
may be intermixed freely to obtain very general types
of meshes.
The �nal form of the semi-discrete equation is

@qm
@t

=
1

J

�
M�1

kmAikj(JJ
�1f ij)

� M�1
kmBlnk

�
JJ�1f ln

�R�
+ sm

=
1

J

�
~Aimj

~f ij � ~Blmn
~f
R

ln

�
+ sm (8)

The groupings ~f ij = JJ�1f ij and ~f
R

ln = (JJ�1f ln)
R

have been used because that is what is normally stored.
Because all elements of a given type are mapped into
the same similarity element, the coe�cients ~Aimj and
~Blmn can be precomputed once and applied through-
out the calculation. Equation (8) is advanced in time
by using the three-stage Runge-Kutta method of Shu
and Osher.3 Analysis of the stability of this approach
can be found in reference 1.

Optimization Procedures

An object-oriented C++ computer program that
implements this method has been developed and val-
idated. The program has been ported to parallel
computing platforms using MPI calls. The initial port
required only minimal changes to the code and was
performed in only a few weeks.2 The speed of the

port is attributed to the modular nature of the code
and the C++ language. Because most parallel ar-
chitectures involve cache-based processors rather than
vector processors, the loop and variable orderings are
altered to minimize cache misses. In the original code,
the index identifying the element varied the fastest.
This is preferable for vector machines because it is the
longest length, and operations across the elements can
be pipelined. However, for cache-based machines, how
many times the data has to be fetched is more im-
portant. In the discontinuous Galerkin method, most
of the work on each element is done independently.
Therefore, the variables should be ordered to keep all
of the information for a given element together. In
this way, all of the relevant information for a given el-
ement is pulled into the cache simultaneously, worked
on, and then replaced with the data for the next ele-
ment. For example, the 
ow variables are all stored in
the same array. Each 
ow variable is represented by
a sum over a set of basis functions. The data for an
element is kept local by having the index for the co-
e�cient of the basis function varying the fastest, then
the index for the 
ow variable, and �nally the index
for the element. All of the arrays in the code are now
ordered in this fashion.

Simply reordering the arrays results in a signi�cant
but not overwhelming reduction in run time. How-
ever, the new orderings make it easier to unroll loops
in a bene�cial fashion. The biggest gains are obtained
by completely unrolling small loops over the number
of variables and number of edges. Even unrolling over
the terms in the basis set is bene�cial. This will be ad-
dressed later in the paper. Reordering the arrays and
performing some unrolling results in an overall perfor-
mance improvement from 30 to 70 mega
ops. Some
individual subroutines, such as the 
ux integrations,
obtain 
oating point operation (
op) rates over 150
mega
ops.

The remainder of the paper will address speci�c
implementation details and coding procedures that af-
fect performance. First, the dominant routines for
constant-coe�cient, linear equations are addressed.
These include the calculation of the volume and edge
integrals, and the transformation of information from
the volume to edge coordinates. Next, the calcula-
tion of polynomial products is examined. Products
must be calculated in the 
ux routines, and are the
most expensive computations for incompressible 
ow
and the linearized Euler equations with a nonuniform
mean 
ow. Finally, the expense of �nding the inverse
of a polynomial is demonstrated. Polynomial inversion
is required for the full Euler equations.

Volume and Edge Integrals/Transformations

For constant-coe�cient, linear equations, the most
expensive computations in the quadrature-free DG ap-
proach involve the volume and edge integrals, and the
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transformation of information from the volume to edge
coordinates. This is not only true on a 
op count ba-
sis, but in terms of actual CPU time as well. The code
includes an extensive set of timing routines which are
used to identify computationally intensive routines. In
the quadrature-free approach, the integrations of the
volume and edge 
uxes are performed in two steps.
The integrals of the basis functions are calculated once
at the beginning of the calculation and stored in a ma-
trix form. In general, it is less expensive to compute
the desired integrals by multiplying this matrix by the
coe�cients of the basis functions than by Gaussian
quadrature.1 However, the matrices are often quite
sparse, and considerably less work is required than a
full matrix-vector multiply. The code was further op-
timized by exploiting the sparsity of the matrices used
to compute the volume and edge terms. The inte-
grations involve the multiplication of ~Aimj

~f ij for the

volume 
ux contributions and ~Blmn
~f
R

ln for the edge

uxes. For two-dimensional equations, i takes on val-
ues of one and two, and j and k range from unity to
the number of basis functions, N . For a basis set that
includes polynomials up to degree p,

N = (p+ 1)(p+ 2)=2 and Ne = p + 1:

In many implementations, N is no more than twenty-
one, corresponding to p = 5 or sixth order for smooth

ows. However, the choice is completely arbitrary.
The volume term in equation (8) includes two matrix-
vector multiplications for each variable in the vector
of unknowns. The square matrices are N � N . In
the edge term, n ranges over the number of edge basis
functions which is Ne. Hence, ~Bl is an N �Ne matrix.
For a triangle, three such multiplications must be per-
formed; whereas, four are required for a quadrilateral.
Another computationally intensive operation in the

DG method is the transformation of the solution vari-
ables in the volume coordinates to each edge coordi-
nate. This can be expressed as

ql = Tlq or qln = Tlnjqj: (9)

Once again, this entails the multiplication of Tl, an
Ne�N matrix, times a vector for each of the unknowns
on every side of the element. Usually, the edge 
ux is
computed from ql, but in some instances it is actu-
ally less expensive to transform the volume 
ux to the
edges in a similar fashion to the solution variables. In
this case, the operations in equation (9) would be re-
peated for the 
ux. With constant-coe�cient, linear
equations, the computation of the edge 
ux is an or-
der Ne operation, so it is less expensive to compute
the 
ux directly.

Blocking

For basis functions of the form �i�j, most of the ze-
roes in the matrices used to compute the integrals are

η

ξ
ξ

η

Fig. 1 Similarity elements

a result of symmetry in the similarity element to which
each arbitrary element is mapped. Figure 1 shows a
reference square and equilateral triangle. In the cur-
rent work the origins of the local coordinates are at the
geometric centers of the elements. The triangle pos-
sesses symmetry in the � direction, so the integration
of any function even in � is zero. For the triangle, this
accounts for approximately half the terms in the ~Ai

matrices. The ~Bl and Tl matrices are generally full
for the triangle except for the one that is at a constant
value of � which is denoted as the �rst edge. Table 1
summarizes the number of nonzero entries in each of
the important matrices as a function of the maximum
degree of the polynomials in the basis set.

p N ~A1
~A2

~B1
~B2;3 T1 T2;3

1 3 1 1 3 5 3 5
2 6 15 19 9 14 6 14
3 10 48 52 20 38 10 30
4 15 107 117 39 73 15 53
5 21 216 225 63 125 21 89

Table 1 Number of nonzero entries in the matrices
used for volume and edge calculations on a triangle
when �i�j type basis functions are used.

The ordering of the basis functions is arbitrary and
can be chosen to group the nonzero entries in the ma-
trices into blocks. The complexity in the pattern of
zeroes comes from the di�erentiation in the volume
term and the combination of the edge and volume
bases in the edge term. For the triangle blocking is
obtained by grouping together all of the basis func-
tions with even powers of �. As an example for p = 2,
the basis set would be ordered f1; �; �2; �2; �; ��g. This
produces blocked matrices of the form

M; A2 =

0
BBBBBB@

x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 0
0 0 0 0 x x
0 0 0 0 x x

1
CCCCCCA
;

A1 =

0
BBBBBB@

0 0 0 0 x x
0 0 0 0 x x
0 0 0 0 x x
0 0 0 0 x x
x x x x 0 0
x x x x 0 0

1
CCCCCCA

(10)
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An x is used to denote a non-zero entry. Because
all of the matrices are blocked similarly, the inversion
and multiplication by M produces ~Ai matrices that
are blocked in the identical fashion to that shown in
equation (10). Hence, the total number of operations
that must be performed is reduced by 50% for the vol-
ume term. Table 2 summarizes the savings realized
for a problem with 2048 triangles. All cases are run
on a SGI Octane with an R10000 CPU running at
225 mHz, and the CPU time is measured in seconds.
The % Tot time is the ratio of the CPU time spent in

Order CPU Time % Tot Time

Unblocked 21.9 23.6
4

Blocked 18.4 20.7
Unblocked 6.39 15.2

2
Blocked 6.07 14.7

Table 2 CPU comparison for blocked and un-
blocked versions of the volume 
ux calculationwith
2048 triangles and 202 steps.

the volume 
ux calculation to the CPU time for the
entire calculation. This gives an indication of the rel-
ative importance of making further improvements to
the computational rate of the particular routine. It
is not meant to be compared between the optimized
and unoptimized routines because the total times are
di�erent between the two calculations. The modest
improvement from blocking is partially caused by the
cached based nature of the workstation. Although
fewer 
oating point operations must be performed, the
same amount of data must be loaded. Furthermore,
the routines under investigation are heavily unrolled.
A factor of two change in the CPU time has already
been obtained through unrolling. In addition, one
must use two loops to perform the multiplications of
the two blocks independently; whereas, only one is re-
quired when blocking is not used. Table 3 shows that
when the problem size is smaller, a greater improve-
ment is obtained for the p = 4 case because all of the
data �ts in the high speed cache.

Order CPU Time % Tot Time

Unblocked 12.6 27.6
4

Blocked 9.6 22.7
Unblocked 3.0 15.3

2
Blocked 2.7 14.1

Table 3 CPU comparison for blocked and un-
blocked versions of the volume term calculation
with 128 triangles and 2515 steps.

The edge matrices are relatively full, but the edge
matrix for the �=constant line and certain orders can
be blocked by reordering the edge basis functions. For

the p = 2 example this is f1; �2; �g which produces

B1 =

0
BBBBBB@

x x 0
x x 0
x x 0
x x 0
0 0 x
0 0 x

1
CCCCCCA
; T1 =

0
BBBBBB@

x 0 0
x 0 0
0 x 0
x 0 0
0 0 x
0 0 x

1
CCCCCCA
: (11)

A penalty is associated with this type of blocking
because all of the T matrices did have an upper tri-
angular region of zeroes that is lost. Also, to take
advantage of all of the sparsity in the T1 matrix is
di�cult. Furthermore, complete blocking can not be
obtained above p = 3. The improvement in perfor-
mance obtained by taking advantage of this type of
blocking did not produce any signi�cant results.
Although squares possess symmetry in both the �

and � directions, the ~Ai have a more complex pattern
and cannot be blocked any di�erently from what was
done for the triangle. Table 4 gives the the number
of nonzero entries in the ~Ai, ~Bl, and Tl matrices as
a function of degree. Because the square is symmetric
in each direction, the matrices for the di�erent edges
and directions have the same number of zeroes. Since
simple blocking cannot account for all of the sparsity,
a di�erent strategy must be used for the square.

p N ~Ai
~Bl Tl

1 3 1 3 3
2 6 6 9 6
3 10 18 20 10
4 15 39 39 15
5 21 75 63 21

Table 4 Number of nonzero entries in the matrices
used for volume and edge calculations on a square
when �i�j type basis functions are used.

Specialized Matrix-Vector Multiplication Routines

The most straightforward and e�ective means to ac-
count for all of the sparsity in the matrices is to write
specialized matrix-vector multiplication routines that
only perform operations involving the nonzero entries.
A byproduct of this is that all of the loops that are
normally used to perform the multiplication are now
completely unrolled. The only real complication with
this approach is that a di�erent routine must be used
for each element type and each degree. To simplify the
task of writing all of the needed routines, a computer
code was written that produces C macros that per-
form the multiplications in an optimal fashion. These
macros are pulled into the appropriate section of code
at compile time, and C++ allows the di�erent mul-
tiplication routines to be associated with elements of
the proper degree. Tables 5 and 6 demonstrates the
savings in CPU time obtained by using the specialized
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multiplication routines. The savings are signi�cant for
both the large and small problems sizes as a savings
of a factor of two is obtained in both cases.

Specialized Loops
CPU % Tot CPU % Tot

Volume Flux 7.0 16.4 13.0 20.0
Edge Flux 5.2 12.1 12.5 19.2

Transformation 3.8 8.8 13.9 21.2

Table 5 CPU time comparison for specialized rou-
tines with unrolled loops accounting for sparsity to
routines using loops. Calculations used 512 p = 4

squares and 503 steps.

Specialized Loops
CPU % Tot CPU % Tot

Volume Flux 11.8 15.1 21.9 20.3
Edge Flux 11.9 15.1 23.8 22.1

Transformation 7.9 9.9 18.4 17.1

Table 6 CPU time comparison for specialized rou-
tines with unrolled loops accounting for sparsity to
routines using loops. Calculations used 2048 p = 4

squares and 202 steps.

Although the matrices for triangles don't have as
many zeroes as squares, the same complete unrolling
technique can be applied for them. C macros were also
generated for this case. Tables 7 and 8 compare the
CPU times in seconds for the specialized matrix-vector
multiplication routines with completely unrolled loops
to the original code. The CPU time for the volume 
ux
calculation is further reduced from the time required
for the blocked version as shown in table 2. Therefore,
some additional bene�t is obtained from completely
unrolling the loops. Furthermore, the edge calcula-
tions also bene�t from the specialized routines. The
bene�t is also obtained for other values of p. For p = 2,
the specialized routines cost about 2/3 that of the orig-
inal versions. The CPU time requirements for the
square are appreciably less for the volume computa-
tion, but commensurate for the edges. The additional
edge for the square o�sets the gains from the sparsity
in comparison with the triangle.

Specialized Loops
CPU % Tot CPU % Tot

Volume Flux 8.8 22.2 13.0 26.3
Edge Flux 5.0 12.6 7.9 16.0

Transformation 3.8 9.6 6.6 13.4

Table 7 CPU time comparison for specialized rou-
tines with unrolled loops accounting for sparsity to
routines using loops. Calculations used 512 p = 4

triangles and 503 steps.

Specialized Loops
CPU % Tot CPU % Tot

Volume Flux 16.1 20.0 21.9 23.6
Edge Flux 13.2 16.5 17.0 18.3

Transformation 8.2 10.2 13.1 14.1

Table 8 CPU time comparison for specialized rou-
tines with unrolled loops accounting for sparsity to
routines using loops. Calculations used 2048 p = 4

triangles and 202 steps.

p N ~Ai
~Bl Tl

1 3 1 1 3
2 6 3 6 6
3 10 7 10 10
4 15 13 15 15
5 21 22 21 21

Table 9 Number of nonzero entries in the matrices
used for volume and edge calculations on a square
when Legendre polynomials are used as the basis
functions.

Basis Functions

Although the matrices are already sparse for the
square, one can employ a di�erent set of basis func-
tions with special properties to create much greater
sparsity. For a square computational element, the
orthogonal Legendre Polynomials are a good choice
because they have a weight function of unity, and
a tensor product can be used to represent a multi-
dimensional basis set. Table 9 summarizes the number
of nonzero entries in the importantmatrices when Leg-
endre Polynomials are used as the basis set. Let Pn(x)
and Pm(y) represent the Legendre polynomials of or-
ders n in x and m in y, respectively. For the basis set
fP0(x); P1(x); P1(y); P2(x); P1(x)P1(y); P2(y); :::g, the
mass matrix becomes

M = Mj;k =

Z



bjbk d
 =

�
2

2m+1
2

2n+1 for m = n

0 for m 6= n

�

(12)
where m and n are the orders of the Legendre poly-
nomials in bj and bk, respectively. This mass matrix

is diagonal. The ~Ai matrices can also be calculated
relatively simply using the recurrence relation4

dPn
dx

=
Pn�2
dx

+ (2n� 1)Pn�1 (13)

and orthogonality. The important integral is

Z



Pj(�)
@Pk(�)

@�i
d
 =

�
2 for k > j and j + k odd
0 otherwise

�

(14)
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The resulting volume matrices have the form

~A1; ~A2 =

0
BBBBBB@

0 0 0 0 0 0
x 0 0 0 0 0
y 0 0 0 0 0
0 x 0 0 0 0
0 y x 0 0 0
0 0 y 0 0 0

1
CCCCCCA

(15)

for p = 2. The x's are nonzero for ~A1, and the y's
for ~A2. The �ll in these matrices is on the order of
N for p = 5 or less. The sparsity decreases slightly
as the order increases. For p = 5, twenty-two nonzero
entries exist in each of the 21 � 21 ~Ai matrices. Ex-
amination of the matrices in (15) reveals that the last
three columns are all zero. These columns would mul-
tiply the coe�cients of the highest order terms in the
polynomial expansion. Hence, the volume 
ux is only
needed to degree p � 1 instead of p when orthogonal
polynomials are used. The reason that the highest or-
der terms are not needed is because the derivative of
the basis function in equation (6) can be represented
completely by terms of lower order. For example, the
derivative of a Legendre Polynomial is given by4

dPn(x)

dx
=

(n+1)=2X
k=1

(2n + 3� 4k)Pn�2k+1: (16)

The lower order terms representing the derivative will
always be orthogonal to highest order terms that are
being used.

The �ll for the ~Bl matrices isN when Legendre poly-
nomials are also used as the edge basis functions. The
transformation matrix from the volume to the edge
coordinates is very sparse for the square because each
edge of the square is either an � = constant or an � =
constant line. Hence, the transformation matrix really
just simulates evaluating the volume polynomial along
a constant line. The T1 matrix has the form

T1 =

0
BBBBBB@

x 0 0
0 x 0
x 0 0
0 0 x
0 x 0
x 0 0

1
CCCCCCA
: (17)

All of the T matrices have N non-zero values for both
the standard and Legendre basis sets. Tables 10 and
11 compare the CPU time in seconds for computations
using the Legendre and standard, nonorthogonal poly-
nomials for basis functions. Macros are employed for
the calculations with both the nonorthogonal and or-
thogonal polynomials. A substantial decrease in the
CPU time is obtained when using the Legendre poly-
nomials. The % Tot column gives the percentage of
the total CPU time spent in that particular routine.

Legendre Nonorthogonal
CPU % Tot CPU % Tot

Volume Flux 5.0 12.9 7.0 16.4
Edge Flux 3.1 8.0 5.2 12.1

Transformation 3.8 9.9 3.8 8.8

Table 10 CPU time comparison for di�erent basis
functions for calculation with 512 p = 4 squares and
503 steps.

Legendre Nonorthogonal
CPU % Tot CPU % Tot

Volume Flux 8.5 11.8 11.8 15.1
Edge Flux 8.6 12.0 11.9 15.1

Transformation 7.9 11.3 7.9 9.9

Table 11 CPU time comparison for di�erent basis
functions for calculation with 2048 p = 4 squares
and 202 steps.

Although Legendre polynomials are not orthogonal
on the triangle, they can still be used as the basis func-
tions. The work and sparsity of the matrices is nearly
identical to that of the standard polynomial set, and
therefore the CPU times in tables 7 and 8 are also
relevant for Legendre Polynomials with triangles. The
advantage of using Legendre polynomials for the trian-
gle is that they could be easily intermixed with squares
using the same basis set. Because the parallelepiped
is the most general shape that can be mapped into a
square, quadrilateral elements are not very useful for
handling geometric complexity. However, one would
prefer to use them over most of the domain because
they are more e�cient. When a common basis set is
used, it would be easy to apply the triangles to han-
dle geometric complexity, and the quadrilaterals to �ll
up the majority of the domain. Even if di�erent basis
sets are used, triangles could still be easily intermixed
with squares if they share the same edge bases at their
interfaces.
Orthogonal polynomials on the triangle can be gen-

erated using Gram-Schmidt orthogonalization in order
to obtain sparse volume matrices for the triangle. The
�ll for the volume matrices when using orthogonal
polynomials is only slightly higher than that obtained
with Legendre Polynomials on the square, and the run
times for the volume 
ux calculations are similar to
those in tables 10 and 11. However, these polynomials
are not of the form of a tensor product, so one cannot
use a subset of the terms from the volume representa-
tion as the edge basis. Hence, the edge matrices are
still full on the second and third edges. One could
use area coordinates for the triangle so that each edge
would lie on a line that is a zero value of one of the co-
ordinates, but this would require dealing with a third
coordinate direction in two dimensions. A similar ef-
fect could by obtained by using a right triangle as the
similarity element so that two edges lie on constant
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lines of the coordinates, but this would lose the sym-
metry properties of the isosceles triangle.
An alternative orthogonal basis for the triangle is

the warped product proposed by Dubiner5 and utilized
by Sherwin and Karniadakas.6 Dubiner's basis em-
ploys a singular mapping of the triangle into a square.
A set of Legendre and Jacobi polynomial products
with a weighting term is used as the basis set which
is orthogonal on the triangle and separable by coor-
dinate direction on the square. A typical term in the
set resembles Pm(�)(1��)mP 2m+1;0

n (�) where P�;�
n (�)

is the nth order Jacobi polynomial.7 Table 12 sum-
marizes the number of nonzero entries in the volume
matrix for Gram-Schmidt and Dubiner's warped basis
sets. The sparsity for the Gram-Schmidt basis is bet-
ter, but the high-order terms are quite complicated.
For constant-coe�cient, linear problems, this is irrele-
vant, but it is important for nonlinear problems when
products of terms must be calculated. Dubiner's ba-
sis also loses the property of not needing the degree p
terms in the volume 
ux.

Gram-Schmidt Warped

p N ~A1
~A2

~A1
~A2

1 3 1 1 2 2
2 6 3 4 7 8
3 10 7 10 20 20
4 15 13 20 43 40
5 21 35 22 84 70

Table 12 Number of nonzero entries in the matri-
ces used for volume calculations on a triangle when
Gram-Schmidt generated orthogonal polynomials
and Dubiner's warped basis are used as the basis
functions.

Polynomial Products

Although some signi�cant performance improve-
ment can be obtained for the volume and edge inte-
grations and the edge transformation, the time spent
in these routines is often overwhelmed by 
ux calcu-
lations when polynomial products must be calculated.
These products occur for the linearized Euler equa-
tions with a nonuniformmean 
ow as given in equation
(2). The reason for the particular form of equation (2)
is to make them conform to (1) while still solving for
the primitive variables that are needed for the prod-
uct terms. Twenty-�ve products must be calculated on
each element to solve equation (2). The solution vari-
ables for the fully conservative form of the linearized
Euler equations involve terms that are products and
sums of the mean and perturbed variables. For ex-
ample, the conserved variable for the x momentum
equation is �u+ �U . It would be extremely expensive
to extract the perturbed variables from such a system
because each term is a polynomial. It may be possible
to rearrange the formulation to avoid the source terms
and the derivatives of the mean 
ow, but this has not

been explored in detail.
The most general procedure for calculating a prod-

uct is projection. For example, one needs to �nd
f = �u. Writing the expansion in terms of the ba-
sis set explicitly gives fmbm = �ibiujbj. Multiplying
both sides by bk and integrating yields

Mkmfm =

Z



bibjbk d
 �iuj: (18)

The mass matrix appears on the left hand side. For
orthogonal sets, the mass matrix is diagonal, and there
is simply a scaling term on each fm. Hence, one would
be left with a typical formula for �nding the coe�-
cients of an orthogonal representation of a function.
The di�erence here is that the function to be �t has a
special form because it arose from the product of two
series. In general the mass matrix is inverted, and the
equation can be written as

fm = �iDmijuj where

Dm = Dmij = M�1
km

Z



bibjbk d
: (19)

Hence, each fm term involves a double sum over the
matrixDm, which can be precomputed and stored. Ig-
noring sparsity, calculating fm is an O(N3) operation
which would clearly dwarf all of the operations dis-
cussed earlier. Fortunately, there is some sparsity, but
the operation count can still be quite high depending
on the details of how the calculations are performed.
Adams8 investigated the products of Legendre Poly-

nomials and was able to derive an explicit expression
for the product in terms of a single series. The expres-
sion has the form

Pm(x)Pn(x) =

min(m;n)X
k=0

ckPm+n�2k(x) (20)

where the ck are constants. This sum includes terms of
higher order than either Pm or Pn. If they are higher
order than any of the terms in the basis set in use, they
can be ignored because the orthogonality property as-
sures us that excluding them will not have any e�ect
on the lower order terms. Equation (20) can be used
to determine the fm directly, or equation (19) can be
used. Table 13 presents the operation counts to re-
solve a product into a single series when using a basis
set of Legendre polynomials. All 
oating point opera-
tions are given equal weight of unity. The counts are
approximate values reported by a symbolic manipula-
tion package after the application of some optimization
procedures to account for duplicate computations. Be-
cause the volume 
ux from the order p terms does not
contribute for the Legendre basis, the table gives the
operation counts for an expansion of the product to
order p � 1 and p. All of the terms to order p are
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required when the volume 
ux is transformed to the
edges rather than calculating the edge 
uxes directly.
Transforming the 
uxes tends to be less expensive for
the linearized Euler equations, and precludes the need
to store representations of the mean 
ow on the edges.
Although the operation counts in table 13 are scal-
ing closer to O(N2) than O(N3), the counts still grow
rapidly with p. A mitigating factor is that all of the
work is done on a small set of data that easily �ts in
cache. Hence, high 
op rates are obtained for these
operations.

Because truncation of the product formula in (20)
is only strictly valid for square domains, orthogonal
bases on triangular domains are also examined. Ta-
ble 13 lists the operation counts when Gram-Schmidt
generated orthogonal polynomials on the triangle are
used as the basis set. These counts are considerably
greater. Dubiner's warped product basis actually has
smaller operation counts for the triangle, but they are
still too large to be practical at high order. In actual-
ity, even the work for the Legendre basis would limit
most applications to p = 4 or less.

Degree of Expansion
Square Triangle

(Legendre) (Gram-Schmidt)
p N p� 1 p p� 1 p

1 3 7 13 10 31
2 6 39 64 96 194
3 10 162 244 477 902
4 15 450 634 1695 2525
5 21 1114 1501 5081 7204

Table 13 Operation counts to perform products
when orthogonal polynomials are used as the basis
set. Counts for expansions including terms up to
degree p � 1 and p are given.

When using standard polynomials of the form �i�j

as the basis set, the calculation of products using equa-
tion (19) can be viewed as a two-step process. The �rst
step is the multiplication of the polynomials into an ex-
pansion of degree p. The product of any two terms in
the basis set produces another term in the basis set,
so the multiplication step is relatively straightforward.
For example c1(�2�3)c2(�3�) = c1c2 �5�4. Hence, the
multiplication of two polynomials of degree p produces
a polynomial of degree 2p at a cost of O(2N2). Be-
cause these polynomials are not orthogonal, terms of
degree up to p don't provide the best approximation
of the product when the terms of degree higher than p
are truncated. Hence, the second part of the process
in equation (19) is to use the terms up to degree p to
represent those from degree p + 1 to 2p. The opera-
tion counts for the overall process are given in table
14. The work required for the standard polynomials
is commensurate with that for the orthogonal polyno-
mial bases. Furthermore, the expansion to p is not

ideal. Equation (19) guarantees that the integration
of the projected volume 
ux against the basis set will
produce an exact result, so the required integral in
equation (3) will also be exact because the derivative
of a basis function is another basis function. However,
errors are incurred when a projected volume 
ux is
transformed to the edges rather than calculating the
edge 
uxes directly from the edge variables.

p N Operation Count

1 3 23
2 6 165
3 10 532
4 15 1305
5 21 2706

Table 14 Operation counts to perform a projected
product of two degree p polynomials when �i�j are
used as the basis set.

The alternative to equation (19) for standard poly-
nomials is to actually perform the steps in the process
separately. In this fashion, one can approximate the
product by truncating terms. Table 15 gives the work
to perform the multiplication of two degree p polyno-
mials when retaining terms in the product of degree
p, p + 1, and 2p. In practice, expansions to degree p
are not stable. Expansions to degree p + 1 have per-
formed adequately for several cases, and the savings
compared with table 14 exceeds 75% for the p = 4
case. The need to be exact to p+1 is in general agree-
ment with the analysis of Cockburn et al.

9 that shows
that quadrature rules must be exact to degree 2p for
the volume terms and to degree 2p + 1 for the edge
terms. Recall that the volume 
uxes are multiplied by
the derivative of a basis function before integration, so
a degree p+ 1 
ux and a degree p � 1 derivative of a
basis function combine to be degree 2p. On an edge,
the combination of a degree p+ 1 
ux and a degree p
basis function produces a degree 2p + 1 function. In

Degree of Expansion
p N p p+ 1 2p

1 3 7 12 12
2 6 24 44 57
3 10 60 105 172
4 15 135 207 405
5 21 231 364 816

Table 15 Operation counts to multiply two degree
p polynomials when �i�j are used as the basis set.

the present approach, rather than projecting the 
ux,
the ~Ai matrices are extended to account for a volume

ux of degree p+1. Similarly, the Tl matrices are en-
larged. The added work is less than would be incurred
by increasing the order of the solution because the ma-
trices only need to have their column spaces increased.
Although an expansion to degree p+ 1 typically runs,

9
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the truncation of the series can create large errors in
certain situations. As the mesh is re�ned, the coe�-
cients of the truncated terms should become smaller as
desired because the basis set can actually be thought
of as a Taylor series expansion about the center of the
element. However, on a given mesh it is possible for
a degree p = 4 case to have a mean 
ow and solu-
tion that are well represented by x3 corresponding to
a 
ux of x6. This 
ux would be completely ignored.
In other words, for this heuristic case, the real 
ux
would be lost and a zero 
ux would be used. The x6

term could be represented by the lower order terms,
but then the expensive projection process is required.
Clearly, the grid and the smoothness of the solution
will determine whether truncation is acceptable. In
the orthogonal polynomial case, even a product for-
mula such as equation (20) implicitly has a projection
embedded within it. Truncation is also di�erent from
what occurs when Gaussian quadrature rules are used
to perform the integration. The quadrature �nds the
integral of the best �t to the data using its basis set.
For example, integrating 1+x+x10 using a quadrature
rule that is exact for polynomials of degree 6 will pro-
duce a considerably better result than just integrating
1 + x. However, the quadrature rules generally have
to sample the 
uxes at many points just to produce
acceptable results.

One method to eliminate the need to deal with all of
the high degree terms in the linearized Euler equations
is to limit the degree of the mean 
ow. If the mean 
ow
is only represented by a linear variation, only terms to
degree p+ 1 arise in the 
uxes. Furthermore, the cost
of performing the multiplications becomes much less
expensive as there are only three terms for the mean

ow. In most cases, the steady, background 
ow only
has large gradients in regions around the body and in
wakes. Hence, the mean 
ow can adequately be de-
scribed by a linear variation over most of the domain.
This approach doesn't present any di�culty for the
method, but does add some coding complexity. In ad-
dition, the unsteady phenomena under investigation
may have scales that are much smaller than the back-
ground 
ow everywhere so that a linear variation of the
mean 
ow is adequate throughout the entire domain.

Polynomial Division

A still more expensive calculation for the
quadrature-free approach that is necessary for some
nonlinear problems is polynomial division. In the
Euler equations, 
uxes of the form �u2 = (�u)(�u)=�
must be obtained from � and �u. For simplicity,
let � = (�u) and consider u = �=� or u� = �.
Multiplying both sides by the test function bk and
integrating yields

�i

Z



bibjbk d
 uj =

Z



bmbk d
 �m (21)

or

�iRikjuj = ~Rkjuj = Mkm�m; where

~Rkj = �i

Z



bibjbk d
: (22)

Essentially, (22) is a matrix equation for the uj. The
right hand side simply involves the multiplication of
the mass matrix by � which is at most an O(N2) oper-
ation. However, computing ~Rkj is an O(N3) operation
similar to what was done to compute products. Again,
there is considerable sparsity in ~Rkj. For p = 4, it
takes 268 
ops for squares and 653 
ops for triangles to
compute ~Rkj with �i�j basis functions. These counts

can be compared with N3 = 3375. Furthermore, ~Rkj

is symmetric, which reduces the work again by nearly
half. However, ~Rkj must be inverted to �nd uj . Even

though ~Rkj is symmetric, inversion is still an O(N3=3)
operation. In addition, the matrix is relatively small,
and it is di�cult to achieve high 
op rates in the in-
version and backsolves.
An alternative to equation (22) for a �i�j basis set

is to expand the inverse of the polynomial in a mul-
tidimensional Taylor series. The di�culty is that the
series is in�nite. Table 16 gives the operation counts
to determine the series to degree p, p+1, and 2p. The
series to p+1 is nearly twice as expensive as multiply-
ing two polynomials, and the expansion to 2p is not
feasible for most cases. Furthermore, after obtaining
an approximation to 1=�, several polynomial products
are required to obtain the desired 
ux. Hence, one has
to make decisions about how many intermediate terms
to retain even if the �nal 
ux is truncated at p+ 1.

Degree of Series
p N p p+ 1 2p

1 3 7 18 18
2 6 24 52 91
3 10 60 115 282
4 15 130 224 680
5 21 240 389 1389

Table 16 Operation counts to �nd the inverse of
a degree p polynomial using a Taylor series when
�i�j are used as the basis set.

Three-dimensional problems

In progressing to three-dimensions, the work gener-
ally doubles for a standard �nite-di�erence scheme as
the number of equations increases from four to �ve,
and the dimensions increases from two to three, i.e.
(5/4)(3/2) = 15/8. For the DG method, the work
does not scale linearly with the number of dimen-
sions because the number of terms in the basis set
increases signi�cantly. For three-dimensional prob-
lems, the number of volume and edge basis functions is
N = (p+1)(p+2)(p+3)=6 and Ne = (p+1)(p+2)=2,
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respectively. The number of volume terms is now a
cubic function of the degree p of the solution, and the
work on each edge is equivalent to the work that was
done in the volume for the two-dimensional cases. Fur-
thermore, there are more edges for three-dimensional
elements, and a transformation is required to align ad-
jacent edge coordinate systems.

The work for the volume and edge integrations and
transformations generally follows the trends observed
in the two-dimensional case. Similarity elements that
are cubes possess symmetry in all three coordinate
directions, and the �ll of the ~Ai matrices is approx-
imately N2=14. The sparsity for tetrahedra is con-
siderably less. The work to compute nonlinear 
uxes
in three-dimensions is a strong function of degree of
the solution as shown in tables 17 and 18. Clearly,
one cannot even consider retaining all of the terms in
polynomial products and -inversion, and even an ex-
pansion to p+ 1 is around three times as expensive as
that for a two-dimensional solution of the same order.

Degree of Expansion
p N p p+ 1 2p

1 4 10 22 22
2 10 46 108 165
3 20 148 325 716
4 35 385 784 2285
5 56 868 1652 5986

Table 17 Operation counts to multiply two degree
p polynomials when �i�j�k are used as the basis set.

Degree of Series
p N p p+ 1 2p

1 4 13 28 28
2 10 56 138 284
3 20 168 372 1259
4 35 418 861 4093

Table 18 Operation counts to �nd the inverse of a
degree p polynomial using a Taylor series expansion
when �i�j�k are used as the basis set.

Conclusions

Several optimization procedures are investigated for
the quadrature-free DG approach that take advan-
tage of the sparsity of the matrices involved in the
computations. Modest improvements are obtained by
blocking the matrices to avoid multiplications by zero.
By writing speci�c code to perform all of the core
operations, substantial reductions in the CPU time
are obtained. Quadrilateral elements with Legendre
polynomials as the basis set are the most e�cient for
constant-coe�cient, linear equations. The orthogonal-
ity produces extremely sparse matrices with a �ll of N .

Using the specialized routines and orthogonal polyno-
mials, a savings of up to 35% in the total run time can
be achieved. Because the most e�cient formulation
involves quadrilaterals, most of the computational do-
main should be composed of this element type. How-
ever, completely general quadrilaterals incur a large
storage penalty, unlike triangles. The con
icting re-
quirements for e�ciency and minimal storage while
handling geometric complexity can easily be resolved
by the approach because triangular and quadrilat-
eral elements may be intermixed freely. Furthermore,
unstructured grid generators can easily create a tri-
angulation around a body with a rectangular outer
boundary that can be matched to a Cartesian mesh.
Even when all of the sparsity is accounted for in

the calculation of polynomial products and inversions,

ux computations will clearly be the limiting factor
for nonlinear problems. However, this scenario is com-
mon to most numerical algorithms. An analysis of
the operation counts for three-dimensional problems
shows that the work required for a nonlinear 
ux is
considerably greater than in two dimensions. Several
simpli�ed solution procedures are suggested that will
minimize the work over the majority of the domain.
The 
op counts are kept to a minimum when stan-
dard polynomials of the form �i�j are used, and the
products and inverses are truncated to a degree one
higher than that of the solution variables. Truncat-
ing the products results in a savings of up to 75%,
but there is still considerable work associated with
nonlinear 
uxes. Because most of the overhead arises
from calculating the 
ux for complicated physics, us-
ing simpli�ed physical models wherever appropriate
will greatly enhance the e�ciency of the scheme.
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